FireFighter | And YOU can Help Fight Fires!

La Paz

Team Updates

Our Project

Develop a tool that focuses on forest fires as a measure of early prevention of fire expansion, with extensive monitoring through the study of large amounts of data linked to neural networks. The project is responsible for analyzing satellite and geographic data and crossing it with trends data in the network, using a learning algorithm that can visualize in real time the areas most prone to fire (and other types of disasters such as landslides, floods), which Depending on the range or the fire radius suggests the nearest places where there is fire water supply and fire control measures.

Analyze the scenarios to gather information for the integration of data with social networks (Facebook, Twitter, Instagram, etc.) and have an impact of the events.

luis.mantillaLuis Miguel Mantilla Condori
rom mpl_toolkits.basemap import Basemap as Bm
import matplotlib.pyplot as plt
from pyhdf import SD as hdf
class Grafica:
def __init__(self,lon1,lon2, lat1, lat2):
if lon2 > lon1:
self.lon1 = lon1
self.lon2 = lon2
else:
self.lon1 = lon2
self.lon2 = lon1
if lat2 > lat1:
self.lat1 = lat1
self.lat2 = lat2
else:
self.lat1 = lat2
self.lat2 = lat1
def plotM(self):
#m = Bm(llcrnrlon=lon[i][0], llcrnrlat=lat[i][-1], urcrnrlon=lon[i][-1], urcrnrlat=lat[i][0], projection='mill')
m = Bm(llcrnrlon=self.lon1, llcrnrlat=self.lat1, urcrnrlon=self.lon2, urcrnrlat=self.lat2, projection='mill')
m.shadedrelief()
plt.savefig('mapa.png',dpi=500)
def plot(self,datos):
#m = Bm(llcrnrlon=lon[i][0], llcrnrlat=lat[i][-1], urcrnrlon=lon[i][-1], urcrnrlat=lat[i][0], projection='mill')
m = Bm(llcrnrlon=self.lon1, llcrnrlat=self.lat1, urcrnrlon=self.lon2, urcrnrlat=self.lat2, projection='mill')
m.shadedrelief()
m.imshow(datos[:])
m.colorbar()
#plt.show()
plt.savefig('mapaT.png',dpi=500)
if __name__ == '__main__':
# fileSD = hdf.SD('/home/dextron/PycharmProjects/incendioHack/datos/MOD11_L2.A2017119.0045.006.NRT.hdf')
fileSD = hdf.SD('datos/MOD11_L2.A2017096.1445.006.2017097093512.hdf')
lat = fileSD.select('Latitude')
lon = fileSD.select('Longitude')
emision = fileSD.select('Emis_31')
#emision2 = fileSD.select('Emis_32')
lsData = fileSD.select('LST')
print lsData.attributes()
print lsData.getdatastrs()
print emision.attributes()
print emision.getdatastrs()
print emision.info()
latM = min(map(lambda x : min(x), lat[:]))
latX = max(map(lambda x : max(x), lat[:]))
lonM = min(map(lambda x: min(x), lon[:]))
lonX = max(map(lambda x: max(x), lon[:]))
#Test grafica
test = Grafica(lonM, lonX, latM, latX)
test.plotM() # mapa coordenadas
test.plot(lsData) # mapa de temperaturas escalado
#test.plot(emision2)
henrryHenrry Chuquimia
henrryHenrry Chuquimia
teamwork
teamwork
jhanelJaneth Hael Martinez Sarzuri
teamwork
teamwork
jhanelJaneth Hael Martinez Sarzuri
teamwork
teamwork
jhanelJaneth Hael Martinez Sarzuri
teamwork
teamwork
jhanelJaneth Hael Martinez Sarzuri
teamwork
teamwork
jhanelJaneth Hael Martinez Sarzuri
NASA Logo

SpaceApps is a NASA incubator innovation program.